Multiple regression and principal components analysis of puberty and growth in cattle.
نویسندگان
چکیده
Multiple regression and principal components analyses were employed to examine relationships among pubertal and growth characters. Records used were from 424 bulls and 475 heifers produced by a diallel mating of Angus, Brahman, Hereford, Holstein and Jersey breeds. Characters studied were age, weight and height at puberty and measurements of weight and hip height from 9 to 21 mo of age; pelvic measurements of heifers also were included. Measurements of weight and height near 1 yr of age were related most highly to pubertal age, weight adn height. Larger size near 1 yr of age was associated with younger, larger animals at puberty. Growth rate was associated with pubertal characters before, but not after, adjustment for effects of breed-type. Principal components of the variation of pubertal and growth characters among animals were strongly related to both weight and height. The majority of the variation among breed-types was due to height. Characteristic vectors of principal components describing the variation of bulls and heifers were strikingly similar. The variance-covariance structure of pubertal characters was essentially the same for both sexes even though the mean values of the characters differed.
منابع مشابه
Derivation of regression models for pan evaporation estimation
Evaporation is an essential component of hydrological cycle. Several meteorologicalfactors play role in the amount of pan evaporation. These factors are often related to eachother. In this study, a multiple linear regression (MLR) in conjunction with PrincipalComponent Analysis (PCA) was used for modeling of pan evaporation. After thestandardization of the variables, independent components were...
متن کاملبررسی ساختار جمعیتی گاوهای بومی ایران با استفاده از تحلیل افتراقی مؤلفههای اصلی
Effective management of genetic resources in the domestic animals is based on characterization of genetic structure and diversity among populations. Strategies reducing complexity and dimensions of data are required to analyze the genetic relationships between populations based on dense genomic data. The objective of this study was to use the discriminant analysis of principal components (DAPC)...
متن کاملپیشبینی دمای سطح آب خلیج فارس با استفاده از رگرسیون چندگانه و تحلیل مؤلفههای اصلی
Since the fluctuations of the Persian Gulf Sea Surface Temperature (PGSST) have a significant effect on the winter precipitation and water resources and agricultural productions of the south western parts of Iran, the possibility of the Winter SST prediction was evaluated by multiple regression model. The time series of PGSSTs for all seasons, during 1947-1992, were considered as predictors, an...
متن کاملپیشبینی دمای سطح آب خلیج فارس با استفاده از رگرسیون چندگانه و تحلیل مؤلفههای اصلی
Since the fluctuations of the Persian Gulf Sea Surface Temperature (PGSST) have a significant effect on the winter precipitation and water resources and agricultural productions of the south western parts of Iran, the possibility of the Winter SST prediction was evaluated by multiple regression model. The time series of PGSSTs for all seasons, during 1947-1992, were considered as predictors, an...
متن کاملEvaluating Dye Concentration in Bicomponent Solution by PCA-MPR and PCA-ANN Techniques
This paper studies the application of principal component analysis, multiple polynomial regression, and artificial neural network ANN techniques to the quantitative analysis of binary mixture of dye solution. The binary mixtures of three textile dyes including blue, red and yellow colors were analyzed by PCA-Multiple polynomial Regression and PCA-Artificial Neural network PCA-ANN methods. The o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of animal science
دوره 66 9 شماره
صفحات -
تاریخ انتشار 1988